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Abstract
We investigate the entanglement entropy between two subsets of particles in the
ground state of the Calogero–Sutherland model. By using the duality relations
of the Jack symmetric polynomials, we obtain exact expressions for both the
reduced density matrix and the entanglement entropy in the limit of an infinite
number of particles traced out. From these results, we obtain an upper-bound
value of the entanglement entropy. This upper bound has a clear interpretation
in terms of fractional exclusion statistics.

PACS numbers: 02.30.Gp, 02.30.Ik, 03.65.Ud, 05.30.Pr

1. Introduction

Entanglement properties of quantum many-body systems have recently been attracting much
attention in condensed matter physics and quantum information theory. The entanglement
entropy (EE), i.e., the von Neumann entropy of the reduced density matrix of a subsystem,
is a measure to quantify how much entangled a many-body ground state is. The EE has
been used to investigate the nature of quantum many-body ground states such as quantum
phase transitions and topological orders [1–5]. When we study the entanglement properties
in many-body systems, exactly solvable models in one dimension such as the harmonic chain
[6], the XY spin chain in a transverse magnetic field [1, 7, 8] and the Affleck–Kennedy–Lieb–
Tasaki model [9–12] serve as a laboratory to test the validity of this new concept. The relation
between the EE in solvable models and the conformal or massive integrable field theories is
extensively discussed in [13, 14].

In this paper, we study the EE of the ground state of the Calogero–Sutherland (CS)
model [15, 16]. The CS model is a quantum integrable model with inverse-square interactions
on a circle. An infinite number of conserved quantities which characterize the integrable
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structure of this model have been constructed using the Lax formalism [17] or a similarity
transformation which realizes the correspondence between the CS model and a set of free
harmonic oscillators [18, 19]. Although it is usually a formidable task to compute the
correlation functions even in the integrable models [20], one can derive exact expressions for
the dynamical correlation functions in this model [21–23]. This is an important feature of
this model which distinguishes itself from the other integrable models. Another interesting
aspect of this model is a connection with the fractional statistics in low dimensions. In
fractional quantum Hall systems, the ground-state wavefunction is given by the Laughlin state
[24], and its excitations have fractional charges. Similarly, the ground state of the CS model
is described by the Jastrow-type wavefunction and its excitations are also quasiholes with
fractional charges. Then we can identify the CS model as a canonical model to study the
exotic properties of the fractional statistics in low dimensions. It should be noted here that the
EE of the Laughlin state itself is also extensively studied recently [25–27].

We consider the EE between two subsystems in the ground state of the CS model. Let
us first explain how to partition our total system into two subsystems. There are mainly two
possible ways to partition the system under consideration. One way is to divide the system
into two spatial blocks the other to divide the N-particle system into an L-particle block and
an (N − L)-particle block. They are called a spatial partitioning and a particle partitioning,
respectively. In this paper, we focus on the latter. As the EE between two spatial regions in
the fractional quantum Hall states can extract a topological quantity such as the total quantum
dimension [25], the EE based on the particle partitioning in the CS model reveals a new
aspect of low-dimensional systems with the fractional exclusion statistics. First, we consider
the L-particle reduced density matrix of our system. By using duality relations of the Jack
polynomials, we can formally obtain the exact expression for the reduced density matrix.
Although we have the exact form of the reduced density matrix, it is difficult to evaluate the
eigenvalues since there are many off-diagonal elements. Then we consider the thermodynamic
limit and find that a great simplification occurs in this limit. We should note here that what
we mean by the thermodynamic limit is (N − L) → ∞ limit, where (N − L) is the number
of particles traced out. It is slightly different from the usual sense such as N → ∞ with fixed
L/N . Finally, we focus on the upper bound value of the EE. In the thermodynamic limit,
we can approximate the reduced density matrix by a maximally entangled state and hence we
can evaluate the upper bound by counting the allowed Young tableaux in the duality relation.
The upper-bound value is estimated as Sbound

N,L = log
(
β(N−L)+L

L

)
and has a clear interpretation

in terms of the exclusion statistics [28]. We also find that the subleading term of the EE is
independent of the total number of particles N.

The organization of this paper is as follows. In section 2, we will introduce some basic
concepts in the CS model used in later sections. Section 3 is the main part of this paper.
We will calculate the reduced density matrix in the CS model and show that it becomes very
simple if we take a thermodynamic limit. Then we will be able to obtain the EE in this limit
and to estimate the upper bound of this EE. We will discuss the physical interpretation of this
upper bound. Section 4 will be devoted to summary and discussions. In appendix A, we will
analyze the EE in the thermodynamic limit more in detail than section 3.

2. Calogero–Sutherland model and Jack symmetric polynomials

2.1. Calogero–Sutherland model

We introduce a precise definition of the CS model. The CS model describes the interaction of
N particles on a circle of length l and the Hamiltonian is given by
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• • • 0 0 0 0 0 (1 0 0) (1 0 0) (1 0 0) (1 0 0) (1 0 0) 0 0 0 0 0 • • •

• • • 0 0 0 0 0 (1 0 0)  0 0 0  (1 0 0) (1 0 0) (1 0 0) 0 0 0 0 0 • • •

Fk− Fk
3 quasiholes

(a)

(b)

Figure 1. (a) The ground-state configuration of the quasi-momenta at β = 3 with five particles.
(b) The excited state with four particles and three quasiholes obtained by removing one particle
from the Fermi sea.

HCS = −
N∑

j=1

1

2

∂2

∂x2
j

+
∑
i<j

β(β − 1)
(

π
l

)2

sin2
(

π
l
(xi − xj )

) , (1)

where xj (0 � xj � l) are the coordinates. Here it is convenient to introduce new coordinates
on a unit circle zj = exp

(
2π i
l

xj

)
. Using these new variables, the exact ground state of HCS is

given by the Jastrow-type wavefunction as

ψ0(z1.z2, . . . , zN) = 1√
N !

⎛
⎝ N∏

j=1

zj

⎞
⎠−β N−1

2 ∏
i<j

(zi − zj )
β . (2)

All the excited states of this model can also be obtained by multiplying certain symmetric
polynomials to ψ0 as

ψλ(z1, z2, . . . , zN) = Pλ(z1, z2, . . . , zN ;β)ψ0(z1.z2, . . . , zN). (3)

The symmetric polynomials in equation (3) are called the Jack symmetric polynomials and
characterized by partitions λ. The partition λ is a sequence λ = (λ1, λ2, . . . , λr , . . .) of non-
negative integers in decreasing order: λ1 � λ2 � · · · � λr � · · ·. Let us introduce some
terminology. We use the notation of Macdonald [29]. Every partition has a corresponding
Young tableau which graphically represents a partition (see figure 2). The nonzero λi are
called the parts of λ. The number of parts is the length of λ, denoted by l(λ) and the sum
of the parts is the weight of λ denoted by |λ| and explicitly written as |λ| = ∑l(λ)

i=1 λi . The
excitation energy is also characterized by the partition as

Eλ = 1

2

(
2π

l

)2 N∑
i=1

k2
i (λ), (4)

where the quasi-momentum ki(λ) = λi + β
(

N+1
2 − i

)
. The set of quasi-momenta is subject

to the exclusion constraint ki − ki+1 � β. In the ground state, the configuration of the quasi-
momenta is given by ki(0) = β

(
N+1

2 − i
)

and this configuration is schematically shown in
figure 1(a). We call this configuration the Fermi sea. In figure 1, a particle can be identified
by one 1 followed by β − 1 zeros and a quasihole by one 0. Therefore, if we remove n
particles from the Fermi sea, βn quasiholes are created in the Fermi sea (see figure 1(b)). We
should note here that the coupling β has been assumed to be a positive integer for the sake
of simplicity in this paper. However, in principle, we can extend this correspondence at any
positive rational coupling β = p/q [30].

2.2. Jack symmetric polynomials

Let us turn to focus on the mathematical aspects of the Jack symmetric polynomials. The Jack
symmetric polynomials are mutually orthogonal with respect to the following scalar product
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Figure 2. The Young tableau corresponding to the partition λ. The box in the tableau indicates
s = (i, j). a(s), l(s), a′(s) and l′(s) are arm-length, leg-length, arm-colength and leg-colength,
respectively.

on the ring of symmetric polynomials in N indeterminates z1, . . . , zN :

〈f, g〉′N =
∮

dz1

2π iz1
· · ·

∮
dzN

2π izN

f (z1, z2, . . . , zN)g(z1, z2, . . . , zN)|ψ0(z1, z2, . . . , zN)|2.
(5)

The normalization of the ground-state wavefunction ψ0 is defined as N (β,N) = 〈1, 1〉′N
and its explicit form is given by (Nβ)!

(β!)N N! . The explicit orthogonality relation for the Jack
polynomials is given by

〈Pλ, Pµ〉′N = δλ,µN (β,N)
∏
s∈λ

a(s) + βl(s) + 1

a(s) + βl(s) + β

∏
s∈λ

βN + a′(s) − βl′(s)
βN + a′(s) + 1 − β(l′(s) + 1)

, (6)

where s = (i, j) is a box on a Young tableau identified by its coordinates 1 � i � l(λ) and
1 � j � λi . The notations a(s), l(s), a′(s) and l′(s) are summarized in figure 2. It is well
known that classical families of symmetric polynomials can be obtained by specializing the
coupling β of the Jack symmetric polynomials. For β = 0, 1, 2 and ∞, the Jack symmetric
polynomials are reduced to the monomial symmetric, the Schur, the zonal and the elementary
symmetric polynomials, respectively [29].

3. Reduced density matrix and entanglement entropy

In this section, we consider the reduced density matrix and the entanglement entropy for any
subset of L particles in a system of N particles in the state (2). The L-particle reduced density
matrix, being normalized, is defined as

ρ(w1, . . . , wL; z1, . . . , zL) = 1

N (β,N)

∮
dzL+1

2π izL+1
· · ·

∮
dzN

2π izN

×ψ0(w1, . . . , wL, zL+1, . . . , zN)ψ0(z1, . . . , zL, zL+1, . . . , zN). (7)

Here the partial trace is taken over the variables zL+1, . . . , zN . To calculate the EE, it is
useful to introduce a trace in a complex integral form. The trace of any L-particle operator
A(w1, . . . , wL; z1, . . . , zL) is defined by

Tr[A] ≡
∮

dz1

2π iz1
· · ·

∮
dzL

2π izL

A(z1, . . . , zL; z1, . . . , zL). (8)

Since the reduced density matrix (7) is normalized, Tr[ρ] = 1. Similarly,
the trace of the product of any L-particle operators A(w1, . . . , wL; z1, . . . , zL) and
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B(w1, . . . , wL; z1, . . . , zL) is defined by

Tr[AB] ≡
∮

dw1

2π iw1
· · ·

∮
dwL

2π iwL

∮
dz1

2π iz1
· · ·

∮
dzL

2π izL

×A(w1, . . . , wL; z1, . . . , zL)B(z1, . . . , zL;w1, . . . , wL),

and the EE is defined by SN,L = −Tr[ρ log ρ]. To obtain the explicit form of the reduced
density matrix, it is convenient to rewrite equation (7) by using the ground-state wavefunctions

of the subsystems, ψ0(z1, z2, . . . , zL) = 1√
L!

(∏L
j=1 zj

)−β L−1
2

∏
1�i<j�L(zi − zj )

β and

ψ0(zL+1, . . . , zN) = 1√
(N−L)!

(∏N
j=L+1 zj

)−β N−L−1
2

∏
L+1�i<j�N(zi − zj )

β , as

ρ(w1, . . . , wL; z1, . . . , zL) = L!(N − L)!

N (β,N)N!

(
L∏

i=1

wizi

)−β N−L
2

ψ0(w1, . . . , wL)ψ0(z1, . . . , zL)

×
∮

dzL+1

2π izL+1
· · ·

∮
dzN

2π izN

L∏
i=1

N∏
j=L+1

(1 − zizj )
β(1 − wizj )

β |ψ0(zL+1, . . . , zN)|2.

(9)

Recalling the definition of the scalar product (5), equation (9) can be rewritten again as

1

N (β,N)

1(
N

L

)�0(w1, . . . , wL)�0(z1, . . . , zL)

×
〈

L∏
i=1

N∏
j=L+1

(1 − zizj )
β,

L∏
i=1

N∏
j=L+1

(1 − wizj )
β

〉′

N−L

, (10)

where �0(z1, . . . , zL) ≡ (∏L
i=1 zi

)−β(N−L)/2
ψ0(z1, . . . , zL). The next thing to do is to

compute the scalar product in equation (10). Let us now introduce the following duality
relation to carry out our calculation [31, 23]:

N∏
i=1

M∏
j=1

(1 + xiyj ) =
∑

λ

Pλ(x1, x2, . . . , xN ;β)Pλ′(y1, y2, . . . , yM ; 1/β). (11)

Here, the conjugate partition λ′ is a transpose of the Young tableau λ and partitions λ are
summed over the Young tableaux which satisfy l(λ) � N and l(λ′) � M (see figure 3).
The duality relation equation (11) plays a crucial role to simplify the reduced density matrix
(10). We shall explain the procedure of the calculation in more details. First, we introduce
dummy variables z

(k)
j , (L + 1 � j � N, 1 � k � β). Second, we expand

∏L
i=1

∏
(j,k)(

1 − ziz
(k)
j

)
by using the duality relation (11). Here, (j, k) runs from (L + 1, 1) to (N, β).

Finally, we set the dummy variables z
(k)
j = zj , (1 � k � β). We can summarize the above as

the following expansion formula:

L∏
i=1

N∏
j=L+1

(1 − zizj )
β

=
∑

λ

Pλ(z1, . . . , zL;β)Pλ′(

β︷ ︸︸ ︷
−zL+1, . . . ,−zL+1, . . . ,

β︷ ︸︸ ︷
−zN, . . . ,−zN ; 1/β), (12)

where partitions λ are summed over those that satisfy l(λ) � L and l(λ′) � β(N − L). Here
we have also assumed that the coupling β is a positive integer. The above formula has a clear
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M

N

Figure 3. Young tableaux within the shaded region are allowed in the expansion formula (11).

physical interpretation as a superposition of the intermediate states consist of L particles and
β(N − L) quasiholes.

Next, we try to rewrite Pλ′ with coupling 1/β in equation (12) in terms of Pλ with β. It
is also well known that the Jack symmetric polynomials can be expressed as polynomials in
power sums pn = ∑

i z
n
i . We give as examples the expressions up to |λ| = 3:

P(1) = p1,{
P(2) = 1

1+β
p2 + β

1+β
p2

1,

P(1,1) = − 1
2p2 + 1

2p2
1,

⎧⎪⎪⎨
⎪⎪⎩

P(3) = 2
(1+β)(2+β)

p3 + 3β

(1+β)(2+β)
p2p1 + β2

(1+β)(2+β)
p3

1,

P(2,1) = − 1
1+2β

p3 + 1−β

1+2β
p2p1 + β

1+2β
p3

1,

P(1,1,1) = 1
3p3 − 1

2p2p1 + 1
6p3

1.

(13)

We define the Jack symmetric polynomials whose arguments are power sums as
P

(α)
λ ({pn(zj )}) ≡ Pλ(zL+1, . . . , zN ;β), where α = 1/β. Another important duality relation

between the Jack polynomials with couplings β and 1/β is given by

ωα

(
P

(α)
λ ({pn})

) = c′
λ(α)

cλ(α)
P

(1/α)

λ′ ({pn}), (14)

where cλ(α) = ∏
s∈λ(αa(s) + l(s) + 1) and c′

λ(α) = ∏
s∈λ(αa(s) + l(s) + α). In equation (14),

ωα is an involution, an automorphism on the ring of symmetric polynomials, and is defined by

ωα(pn) = −(−1)nαpn. (15)

Using the second duality relation equation (14), we can rewrite Pλ′ in equation (12) as

Pλ′(

β︷ ︸︸ ︷
−zL+1, . . . ,−zL+1, . . . ,

β︷ ︸︸ ︷
−zN, . . . ,−zN ; 1/β) = cλ(α)

c′
λ(α)

P
(α)
λ ({−pn(zj )}). (16)

We should note here that the argument of P
(α)
λ in the right-hand side of equation (16) is

not power-sum pn itself but −pn and hence P
(α)
λ ({−pn(zj )}) 	= Pλ(zL+1, zL+2, . . . , zN ;β).

In other words, P
(α)
λ ({−pn(zj )}) is expanded by the original Jack polynomials

Pµ(zL+1, zL+2, . . . , zN ;β) with |µ| = |λ|. By substituting equations (12) and (16) into
equation (10), we formally obtain

ρ(w1, . . . , wL; z1, . . . , zL) = 1

N (β,N)

1(
N

L

)�0(w1, . . . , wL)�0(z1, . . . , zL)

×
∑
λ1,λ2

〈
P

(α)
λ1

({−pn(zj )}), P (α)
λ2

({−pn(zj )})
〉′
N−L

× cλ1(α)

c′
λ1

(α)

cλ2(α)

c′
λ2

(α)
Pλ1(w1, . . . , wL;β)Pλ2(z1, . . . , zL;β). (17)
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We stress that the form of the reduced density matrix (17) is exact even when (N − L)

is finite. Let us see the structure of the reduced density matrix more closely. Since〈
P

(α)
λ1

({−pn}), P (α)
λ2

({−pn})
〉′
N−L

= 0 when |λ1| 	= |λ2|, (17) is block diagonal and the size of
each block is d(m) × d(m) (m = 0, 1, . . . , β(N − L) × L), where d(m) is the number of
partitions λ satisfying l(λ) � L, l(λ′) � β(N − L) and |λ| = m. Therefore, in principle,
we can numerically obtain exact eigenvalues of the density matrix by diagonalizing all the
blocks in (17). Although the original problem is reduced to the finite-dimensional eigenvalue
problem, it is also difficult to evaluate the eigenvalues of submatrices when d(m) is large.
However, if we consider (N − L) → ∞ limit, a considerable simplification occurs and we
can evaluate the EE without any numerical calculations.

Let us now consider the thermodynamic limit of the subsystem which traced out, i.e.,
(N − L) → ∞. The crucial point in our calculation is that P

(α)
λ ({−pn}) are asymptotically

orthogonal with each other if we take the limit (N − L) → ∞. In this limit, the reduced
density matrix of our subsystem (17) becomes similar to the maximally entangled state. To see
this, it is useful to expand the Jack symmetric functions in terms of the power sum symmetric
functions [29] as

P
(α)
λ ({pn}) = cλ(α)−1

∑
ρ

θλ
ρ (α)pρ, (18)

where the power sum symmetric functions are defined for a partition ρ = (ρ1, ρ2, . . . , ρl(ρ))

as pρ ≡ ∏l(ρ)

i=1 pρi
. The coefficients θλ

ρ (α) satisfy the following orthogonality relations [29]:∑
ρ

zρα
l(ρ)θλ

ρ (α)θµ
ρ (α) = δλµcλ(α)c′

λ(α)

∑
λ

cλ(α)−1c′
λ(α)−1θλ

ρ (α)θλ
σ (α) = δρσ z−1

ρ α−l(ρ),
(19)

where zρ = ∏
i�1 imi mi! with mi , the number of parts of ρ equal to i. The coefficients θλ

ρ (α)

are nonzero if and only if |λ| = |ρ|. From these relations, we can easily expand the power
sum symmetric functions pρ in terms of the Jack symmetric functions as

pρ =
∑

µ

zρα
l(ρ)θµ

ρ (α)c′
µ(α)−1P (α)

µ ({pn}). (20)

We stress here that the above relation itself does not depend on whether we consider the
Jack symmetric polynomials in a finite number of variables or the Jack symmetric functions
in infinitely many variables. By using equations (18) and (20), we can formally expand
P

(α)
λ ({−pn}) in terms of P

(α)
λ ({pn}) as

P
(α)
λ ({−pn(zj )}) = cλ(α)−1

∑
ρ

∑
µ

(−α)l(ρ)zρθ
λ
ρ (α)θµ

ρ (α)c′
µ(α)−1P (α)

µ ({pn(zj )}). (21)

Now we are ready to see the asymptotic orthogonality of P
(α)
λ ({−pn}). The scalar product of

P
(α)
λ1

({−pn}) and P
(α)
λ2

({−pn}) can be represented as〈
P

(α)
λ1

({−pn(ζj )}), P (α)
λ2

({−pn(ζj )})
〉′
N−L

= cλ1(α)−1cλ2(α)−1

×
∑
ρ1 ,ρ2
µ1 ,µ2

(−α)l(ρ1)+l(ρ2)zρ1zρ2θ
λ1
ρ1

(α)θµ1
ρ1

(α)θλ2
ρ2

(α)θµ2
ρ2

× (α)c′
µ1

(α)−1c′
µ2

(α)−1
〈
P (α)

µ1
, P (α)

µ2

〉′
N−L

. (22)
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Suppose that the number of the particles in the subsystem traced out, (N − L), is sufficiently
large, i.e., in the thermodynamic limit, we can simplify the scalar product in equation (22) as

lim
N−L→∞

〈
P (α)

µ1
, P (α)

µ2

〉′
N−L

= δµ1µ2N (β,N − L)
c′
µ1

(α)

cµ1(α)
. (23)

In this limit, we can apply the orthogonality relations (19) to equation (22) and hence we
obtain 〈

P
(α)
λ1

({−pn(ζj )}), P (α)
λ2

({−pn(ζj )})
〉′
N−L

∼ δλ1λ2N (β,N − L)
c′
λ1

(α)

cλ1(α)
. (24)

We call this relation an asymptotic orthogonality of P (α)({−pn}). The crucial point in
the above calculation is that the sign factor (−1)l(ρ1)+l(ρ2) which originally comes from the
expansion of P

(α)
λ ({−pn}) in equation (22) is canceled out. By substituting equation (24) into

equation (17), the asymptotic form of the reduced density matrix can be expressed by the
normalized basis P̃λ as

ρ(w1, . . . , wL; z1, . . . , zL) ∼
∑

λ

DλP̃λ(w1, . . . , wL;β)P̃λ(z1, . . . , zL;β)�0({wj })�0({zj }),

(25)

where Dλ and P̃λ are defined as

Dλ = 1(
Nβ

Lβ

) ∏
s∈λ

βL + a′(s) − βl′(s)
βL + a′(s) + 1 − β(l′(s) + 1)

(26)

and P̃λ = Pλ/
√〈Pλ, Pλ〉′L, respectively. Then we can obtain an exact expression for the EE in

the thermodynamic limit as

SN,L = −
∑

λ

Dλ log Dλ. (27)

Although this is the exact expression for the EE in the large-(N − L) limit, it is formidable
to sum up all Dλ log Dλ because they depend on λ in a complicated way. To see the physical
meaning of this value, let us now evaluate the upper-bound value of the EE. Since the reduced
density matrix ρ(w1, . . . , wL; z1, . . . , zL) has already been normalized, we immediately note
that Trρ = ∑

λ Dλ = 1. Under this constraint, −∑
λ Dλ log Dλ takes the maximum value

when all Dλ’s are equal. We can take this maximum value as the upper bound. This
maximization corresponds to neglecting the fact that Dλ depends on the shape of the Young
tableau. From the viewpoint of quantum information, we can say that the reduced density
matrix (25) can be approximated by a maximally entangled state. The upper-bound value
of the EE is completely determined by the number of allowed tableaux. Since the allowed
partitions in the duality expansion equation (12) satisfy l(λ) � L and l(λ′) � β(N − L),
the total number of allowed tableaux is easily obtained as

(
β(N−L)+L

L

)
. Then the upper-bound

value of the EE is given by

SN,L � Sbound
N,L = log

(
β(N − L) + L

L

)
, (28)

where the equality holds when β = 1, i.e., the free-fermion case. Although it is one of the
general properties that the EE is invariant under the replacement L → N − L,N − L → L,
the upper bound itself does not satisfy this property: Sbound

N,L 	= Sbound
N,N−L. This fact means that

SN,N−L approaches Sbound
N,L , not Sbound

N,N−L when (N −L) → ∞. The upper bound Sbound
N,L enables

us to understand the physical meaning of the EE in the ground state of the CS model. We
now try to explain it in terms of the exclusion statistics. In the ground state of the CS model,
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occupied quasi-momenta ki(0) are separated by β −1 unoccupied ones. We can schematically
describe this configuration as figure 1(a). In our calculation of the EE, tracing out one particle
from the N-particle ground state corresponds to the decimation of one quasi-momentum from
the Fermi sea. In other words, one 1 is removed from the Fermi sea when we trace out one of
coordinates zj . As we said before, β quasiholes (β zeroes) are created in the Fermi sea in this
process (see figure 1(b)). It is now obvious that tracing out (N − L) particles from the ground
state corresponds to the decimation of (N − L) quasi-momenta from the Fermi sea and the
creation of β(N −L) quasiholes in the Fermi sea. The number of possible intermediate states
consisting of L particles and β(N − L) quasiholes can be counted as follows. First, we recall
that the Fermi sea consists of N 1’s and (β − 1)N 0’s. After the decimation of the (N − L)

quasi-momenta, the configuration of the state consists of L 1’s and (β − 1)N + (N − L) 0’s
with the exclusion constraint such that any two 1’s are separated by more than (β − 1) 0’s.
Finally, we note that the number of possible intermediate states is identical to that of possible
configurations of 1’s and 0’s with the constraint and can easily be obtained as

(
β(N−L)+L

L

)
. Here

we can see that the upper bound of the EE Sbound
N,L is equal to the logarithm of this number. It

is also remarkable that Sbound
N,L coincides with the upper-bound value of the EE in the Laughlin

state if we identify m = β, where m denotes the inverse of the filling factor ν [27]. It would
also be possible to interpret Sbound

N,L in terms of the flux attachment in the context of the quantum
Hall effect. While Sbound

N,L provides a natural way to understand the EE in the CS model in
terms of the fractional exclusion statistics, we can also obtain a more accurate value of the EE
by taking it into account that Dλ depends on the shape of the Young tableau λ. Comparing
this value with Sbound

N,L , we note that the subleading term, SN,L −Sbound
N,L , does not depend on the

total number of particles N but only on the coupling β and L. A similar universal property has
already been found in the study of the one-particle EE of hard-core anyons on a ring, where the
subleading term depends only on the anyonic parameter θ [32]. The details of the calculations
and the difference between SN,L and Sbound

N,L in the thermodynamic limit are argued in
appendix A.

4. Summary and discussions

In this paper, we have studied the entanglement entropy between two blocks of particles in
the ground state of the Calogero–Sutherland model. We have obtained the exact expressions
for both the reduced density matrix of the subsystem and entanglement entropy in the limit of
an infinite number of particles traced out. In our calculation, the duality relations between the
Jack symmetric polynomials with coupling β and those with 1/β have played a crucial role.
From the obtained results, we have estimated the upper-bound value of the EE by a variational
argument. We have also found that the upper-bound value itself has a clear physical meaning
in terms of the fractional exclusion statistics. This interpretation indicates that entanglement
between subsets of particles enables us to extract interesting properties in a wide range of
systems with the fractional exclusion statistics. It is also remarkable that this upper bound
coincides with that of the Laughlin state in fractional quantum Hall systems when we identify
the inverse of the filling factor m = β.

While we have studied the EE between two blocks of particles, it would also, of course,
be important to study the EE between two spatial regions in the ground state of the CS model.
In spin systems on a lattice such as the XY spin chain in a transverse magnetic field, it
is possible to perform an exact analysis of the EE between two spatial blocks with the aid
of the Fredholm determinant technique [8]. This technique based on the Riemann–Hilbert
problem also plays a crucial role in the computation of the correlation functions for random
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matrices. On the other hand, it is known that the CS model is identical to Dyson’s Brownian
motion model of the circular ensembles with β = 1, 2, 4 [33]. Thus, it is promising to obtain
the EE for spatial partitioning by applying the Fredholm determinant technique. It would
also be interesting to investigate entanglement properties in integrable lattice models with
inverse square interactions such as the Haldane–Shastry model [34, 35] and the long-range
supersymmetric t–J model [36]. It remains an interesting issue whether our method developed
in this paper can be directly applied to these systems by using the freezing trick [37, 38].
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Appendix A. More detailed analysis

In this appendix, we discuss the more detailed analysis of the EE (27) and the universal
subleading correction of the EE. Although both SN,L and Sbound

N,L go to infinity in the
thermodynamic limit: N → ∞ and L is fixed, the difference Sbound

N,L − SN,L is finite. The
strategy to show this fact is to rewrite the sum over partitions as the integral over continuous
variables. This method is similar to the calculation of the dynamical correlation functions in
the CS model by Lesage, Pasquier and Serban [23]. Let us start with rewriting equation (26)
in terms of parts of λ:

Dλ = 1(
βN

βL

) L∏
j=1

�(β(L − j) + 1)�(λj + β(L − j + 1))

�(β(L − j + 1))�(λj + β(L − j) + 1)

= βLL!(β(N − L))!

(βN)!

L∏
j=1

�(λj + β(L − j + 1))

�(λj + β(L − j) + 1)
. (A.1)

Introducing the new scaled variables tj = λj/N and using the Staring formula: �(x + 1)
x→∞∼√

2πx(x/e)x , we obtain the simple expression for Dλ:

Dλ ∼ L!

NLβ(β−1)L
f (t1, . . . , tL;β), (A.2)

where f (t1, . . . , tL;β) = ∏L
j=1 t

β−1
j . In N → ∞, we can replace the sum over {λj } with the

integral over {tj }:
1

NL

∑
0�λL�···�λ1�β(N−L)

→
∫

D

dt1 · · · dtL, (A.3)

where D is the region satisfying 0 � tL � . . . � t1 � β. From these results, Trρ = ∑
λ Dλ is

evaluated as

L!

β(β−1)L

∫
D

dt1 · · · dtLf (t1, . . . , tL;β) = 1

β(β−1)L

∫ β

0
dt1 · · ·

∫ β

0
dtLf (t1, . . . , tL;β)

= 1

β(β−1)L

(∫ β

0
dt tβ−1

)L

= 1. (A.4)



Entanglement entropy in the Calogero–Sutherland model 13941

This is consistent with the normalization condition of ρ. Similarly, the EE SN,L can be
rewritten in terms of the integral over {tj }:

SN,L = −
∫

D

dt1 · · · dtL
L!

β(β−1)L
f log

(
L!

NLβ(β−1)L
f

)

= L log N − log L! + (β − 1)L log β − L!

β(β−1)L

∫
D

dt1 · · · dtLf log f. (A.5)

We can exactly evaluate the integral of the last term as follows:∫
D

dt1 · · · dtLf log f = 1

L!

∫ β

0
dt1 · · ·

∫ β

0
dtL(t1 · · · tL)β−1

L∑
j=1

log t
β−1
j

= L

L!

(∫ β

0
dt tβ−1 log tβ−1

) (∫ β

0
dssβ−1

)L−1

= β(β−1)L

(L − 1)!
(β log β − log β − 1 + β−1). (A.6)

Thus SN,L = L log N − log L!+L(1−β−1). On the other hand, since Sbound
N,L = log

(
β(N−L)+L

L

)
∼ L log N − log L! + L log β, we finally obtain

Sbound
N,L − SN,L ∼ L(log β − 1 + β−1). (A.7)

Therefore, the subleading term of the EE does not depend on the total number of particles
N but only on L and the coupling of the CS model β. Note that the right-hand side of
equation (A.7) vanishes only for β = 1. This result means the EE can saturate the upper-
bound entropy only for the free fermion case.
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